
Usage notes for CLIPMETA
Hippocrates Sendoukas

University of Southern California
Dept. of Finance & Bus. Economics

June 15, 1993

Introduction
clipmeta.exe is a small utility that takes a metafile or a bitmap from the system clipboard and
saves it to a disk metafile. This is helpful because most programs can send a metafile or bitmap
to the clipboard (using the "Cut" or "Copy" commands from the "Edit" submenu), but do not
produce a disk metafile. The main motivation for writing this program was to save pictures
produced by any Windows program, so they can be used with my DVI driver. I tested it with
several popular programs (Excel, PowerPoint, Word for Windows, 1-2-3 for Windows, Toolbook
and Paintbrush) and it works fine.

Operation
You can invoke the program as:

clipmeta [-q] [-p] [filename]
where the items is square brackets are optional. If you do not supply any parameters, the
program displays some information about the "natural" size of the data in the clipboard, and then
displays a "Save As" dialog box that lets you select the directory and filename to save the
metafile. If you specify the "-q" (quiet) switch, the program will not display the initial information
about the metafile. If you specify the "-p" (plain) switch, the produced metafile will be in plain
format instead of placeable format. If you supply a filename, the program will skip the "Save As"
dialog box and will use the specified filename as the destination for the metafile.

The optional command line parameters are not anachronisms even for graphical user interfaces:
suppose for example that you have a chart in Microsoft Excel and you want to save it to a
metafile. Suppose that the name of the chart is "graph.xlc". The standard steps to produce the
metafile are:

1. Select the entire chart by clicking the mouse.
2. Select the "Copy" command from the "Edit" submenu.
3. Minimize Excel so you can see the Program Manager.
4. Run the "clipmeta" utility.
5. Press the OK button when you see the size of the metafile.
6. Select a directory and enter the name "graph.wmf" in the "Save As" dialog box.
7. Restore Excel to continue.

These steps are not that difficult, but you do not want to do them frequently. After all, the whole
point of a graphical user interface is to make your life easier. For this reason, you can write an
Excel macro that carries all these steps automatically. I use the following macro:

A1 Export_Chart (a)
A2 =get.window(1)
A3 =if(find(".XLC",A2)>0,goto(A5))
A4 =goto(A9)
A5 =window.restore()
A6 =select("Chart")
A7 =copy()

1

A8 =exec("clipmeta -p -q"&substitute(A2,".XLC",".WMF"),1)
A9 =return()

The first line (A1) is the name of the macro and specifies that it can be invoked with the Control-A
key. The second line (A2) gets the filename of the current window (it should be "GRAPH.XLC").
The next two lines (A3 and A4) make sure that the name has the extension "XLC". This check is
useful, if you try to run the macro either from a non-chart window, or if the chart has not been
already named. The next line (A5) ensures that the chart window is not maximized or minimized
(you will get better results if it is at its natural size). The next two lines (A6 and A7) select the
chart and copy it to the clipboard. The following line (A8) substitutes the extension "WMF" instead
of "XLC" (the filename will become "GRAPH.WMF") and executes the command "clipmeta -p -q
GRAPH.WMF". The final line (A9) terminates the macro.

If you run the macro from the chart window, all the above steps will be done automatically. You
can put the macro in the global macro sheet of Excel, so it is always available. Furthermore, you
can put a new button in the graph toolbar, and assign the macro to that button; in this way, you
can do the whole operation just by clicking on that button.

You can tailor the macro to your own preferences, and you can do similar things on any
application that supports macros. My main objective was to maximize the user's convenience.
You can also put the program in any of the Program Manager groups for quick access when you
cannot automate the entire process.

The program can export three different types of data from the clipboard: metafiles (reported as
"Picture" by the Display submenu of clipboard.exe), device independent bitmaps (DIB) (reported
as "DIB bitmap" by clipboard.exe) and device dependent bitmaps (DDB) (reported as "Bitmap" by
clipboard.exe). If there are multiple data in the clipboard, clipmeta will try first to find a metafile. If
no metafile exists in the clipboard, then it will try to find a DIB; if it doesn't find it either, it will try to
find a DDB. If it finds any bitmaps in the clipboard (DIB or DDB), it will also look for a palette
which usually accompanies such bitmaps. Note that the DDB format was not really meant to be
transferred between programs or devices, and it will be better if you can avoid it; I support it only
as a method of last resort.

Bitmap considerations
A metafile can contain any Windows primitives including bitmaps; several programs (eg.,
Paintbrush) follow this approach for convenience purposes. There are however several problems
with this method:

1. Bitmaps cannot be scaled easily, so such metafiles are not scalable for any practical
purposes. This is not a limitation of the metafile format or the operating system: it is just a fact
of life. If you truly need to scale a bitmap, either do the scaling with a specialized program
before you put it in a metafile, or use a scalable format.

2. Large bitmaps consume lots of disk space and memory. Many video drivers have serious
bugs when handling objects larger than 64K bytes, so you may encounter GP faults in any
program which tries to read a large bitmap. The only solutions for this problem are to reduce
the size of the bitmap, or use a better written video driver.

3. As mentioned above, bitmaps come in two varieties: Device Dependent Bitmaps (DDB) and
Device Independent Bitmaps (DIB). The primary purpose of DDBs is for use within a single
program, because they cannot be displayed properly on different video modes; as a matter of

2

fact, they often are not displayed properly even in the same video mode if the color palette
can change. Another problem specific to DDBs is that their size depends on the video mode
instead of the actual bitmap data. Consider for example a black and white 1024x1024 bitmap;
its data actually occupy 1M bits, which is equal to 128K bytes. If you export this bitmap in DIB
format, the file size will be approximately equal to 128K. If on the other hand you export this
bitmap in DDB format and you use a 256-color mode, it will take 1M bytes. Similarly, the
same DDB will take 3M bytes on a TrueColor display. It should be obvious by now that it's
better to avoid DDBs whenever possible (ie., try to use programs which export DIBs instead
of DDBs).

Clipmeta tries to alleviate some of the bitmaps problems: whenever it sees a DDB or DIB (but no
metafile) in the clipboard, it tries to create an reasonably efficient metafile by splitting the bitmap
in small pieces; experiments show that this approach circumvents the 64K limitation of the buggy
video drivers. There is no time or space penalty for this trick. This however cannot work for
metafiles (which may include bitmaps) because the program has no way of knowing the contents
of the metafile. For this reason, I would recommend that you use the bitmap format (instead of the
metafile format) when you want to send a bitmap to the clipboard. Paintbrush for example can
send the graphic either in the bitmap format, or inside a metafile that just contains the bitmap.
Clipmeta will be able to split the bitmap in pieces in the first case, but not in the second.
Therefore, make sure that you instruct Paintbrush to refrain from sending the metafile (just verify
that the entry "Omit Picture Format" in the "Options" submenu of PaintBrush is checked).

Some programs (eg., Paintbrush or Ghostscript) prefer to send a DDB instead of a DIB; clipmeta
can handle it under a 16-color mode (because the system palette is fixed), or under a HiColor or
TrueColor mode (because there is no palette). Unfortunately, the scheme fails spectacularly
under a 256-color mode, because the bitmap colors depend on the hardware palette that was
current at the time the bitmap was sent to the clipboard; the palette will almost certainly be
different when you import the bitmap in your document, and all colors will be wrong; in most
cases, you will end up with a solid black bitmap. I am trying to find a way around this problem, but
it will take some time. This is probably the biggest weakness of the DDBs and that's why I
strongly suggest to avoid them whenever possible.

Other considerations
The standard extension for windows metafiles is "wmf"; you should not use any other extension
for compatibility purposes. Aldus developed an extended metafile format (called a "placeable"
metafile), which circumvents a limitation of standard metafiles (it includes information about the
natural size of the picture). Unfortunately, they chose the same extension (wmf) as the one for
standard metafiles, and this can be the source of some confusion. Most applications expect a file
with a "wmf" extension to be in the placeable format, while other applications (eg. Ventura) expect
the plain format. If the metafile contains text, you will get much better results by using the
scalable fonts introduced in Windows 3.1. Finally, keep in mind that unless you have the
placeable metafile filters (distributed with MS-Word, PageMaker, Toolbook, etc.), you should use
the standard (plain) metafile format; the DVI driver can read this format without any external
support. Some programs do not specify the size of the metafile when they pass it to the clipboard.
In that case, clipmeta cannot use the placeable format; it will save the metafile in the standard
(plain) format. Metafiles produced by Simulink (Matlab for Windows) cannot be properly scaled,
because it uses certain instructions reserved for the program inporting the metafile. Apart from
this, its metafiles have a black background with white drawings which renders them useless for
printing. Mathematica metafiles can be very demanding on the system; in many cases Windows
runs out of resources (without any error indication) and parts of the graphic may be wrong or
missing. The only workaround that I know is to simplify the graphic: even if you add memory in

3

your system, the amount of resources stays the same because of Windows limitations.

4

